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We evaluate the electronic transmission and conductance in bilayer graphene through a finite number of
potential barriers. Further, we evaluate the dispersion relation in a bilayer graphene superlattice with a periodic
potential applied to both layers. As a model we use the tight-binding Hamiltonian in the continuum approxi-
mation. For zero bias the dispersion relation shows a finite gap for carriers with zero momentum in the
direction parallel to the barriers. This is in contrast to single-layer graphene where no such gap was found. A
gap also appears for a finite bias. Numerical results for the energy spectrum, conductance, and the density of
states are presented and contrasted with those pertaining to single-layer graphene.
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I. INTRODUCTION

Low-dimensional systems have long been the subject of
intensive research both on their fundamental properties and
on possible applications. In this respect the recent production
of atom-thick crystal carbon layers �graphene� has raised the
possibility of the development of new graphene-based de-
vices that exploit its unusual electronic and mechanical prop-
erties �for a recent review see Ref. 1�. The electronic spec-
trum of defect-free single-layer graphene is gapless and,
together with the chiral aspect of the carriers in this system,
leads to a perfect transmission through an arbitrarily high
and wide potential barrier, i.e., the Klein paradox.2,3 That can
be avoided if a gap is introduced in the electronic spectrum
and may be necessary for certain applications, e.g., for im-
proving the on/off ratio in carbon-based transistors.

There are a few methods to introduce a gap in the spec-
trum of graphene. One of them is to use nanoribbons in
which a band gap4 arises due to the lateral confinement.
Also, depositing graphene on a substrate such as boron ni-
tride was found recently to result in a band gap5 of 53 meV.
In bilayer graphene6 a gap can be introduced by applying a
bias between the two layers or by doping one of them such
that a potential difference results between the layers.7–10

Changing the bias in the latter case can open and close the
gap dynamically which is interesting for transistor applica-
tions. Nanostructured gates can thus allow the creation of
quantum dots on bilayer graphene.11

In this paper we investigate the electronic properties of a
biased bilayer in which the potential difference between the
two layers is changed periodically. Such a superlattice �SL�,
which can be created by applying gates to the bilayer, is of
interest as it shows how a one-dimensional �1D� band struc-
ture may appear in such a system. An additional motivation
is that curvature effects of corrugated single-layer graphene
lead to an effective periodic potential resembling that of a
SL.12 Although in a bilayer this effect would be weaker,
since the bilayer is less bendable than a single layer, it might
still be important.

This paper is organized as follows. Section II briefly
shows the basic formalism. In Sec. III results for the trans-

mission and conductance through a finite number of barriers
are presented. Section IV shows results for the dispersion
relation and the density of states �DOS� in SLs in bilayer
graphene. Finally, a summary and concluding remarks are
given in Sec. V.

II. HAMILTONIAN, ENERGY SPECTRUM, AND
EIGENSTATES

Bilayer graphene consists of two A-B-stacked monolayers
of graphene. Each monolayer has two independent atoms A
and B in its unit cell. The relevant Hamiltonian, obtained by
a nearest-neighbor tight-binding approximation near the K
point, and the eigenstates � read

H =�
V1 � t� 0

�† V1 0 0

t� 0 V2 �†

0 0 � V2

�, � =�
�A

�B

�B�

�A�

� . �1�

Here �=vF�px+ ipy�, px,y =−i��x,y is the momentum operator,
vF=106 m /s is the Fermi velocity, V1 and V2 are the poten-
tials on layers 1 and 2, respectively, and t� describes the
coupling between these layers. As shown in the Appendix,
for spatially independent t�, V1, and V2, the spectrum con-
sists of four bands given by

���
+ = ��kt�

2
� t��4k2	2/t�2 + k2 + t�2/4�1/2,

���
− = − ��kt�

2
� t��4k2	2/t�2 + k2 + t�2/4�1/2. �2�

Here �kt�
2 =k2+	2+ t�2 /2, 
= �V1−V2�, 	=
 /2�vF, �

=E /�vF, and t�= t� /�vF. The eigenstates � of H are given
by Eq. �A11� in the Appendix.

A reduced version of the four-band Hamiltonian shown in
Eq. �1� that is often used9 is given by

H = −
vF

2

t�

� 0 �†2

�2 0
	 + V�x�1 , �3�

where 1 is the 2�2 unit matrix. Assuming solutions of the
form A exp�ikxx�exp�ikyy� we can replace px by �kx. Then
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setting the determinant of the equation H�=E� equal to zero
gives rise to the two-band spectrum

E − V = � �vF
2�2/t���kx

2 + ky
2� , �4�

where V is the potential applied to each layer. In Sec. III we
compare some of the results obtained from Eqs. �1� and �2�
with those obtained from Eqs. �3� and �4�.

III. FINITE NUMBER OF BARRIERS

A. Transmission

When applying a bias to a metallic strip a potential barrier
is created; we will approximate it by a square potential bar-
rier. The eigenstates � given in the Appendix can be used in
each region of constant potential. In matrix notation the
wave function in region j with a constant potential can be
written as a matrix product �cf. Eq. �A13� of the Appendix�,

� j = G jM jA j , �5�

where A j = �Aj ,Bj ,Cj ,Dj�T and the superscript T denotes the
transpose of the row vector. Then we apply the continuity of
the wave function at different potential steps. For the �j
+1�th potential step at xj+1 we obtain

A j+1 = M j+1
−1 �xj+1�G j+1

−1 G jM j�xj+1�A j . �6�

This links the coefficients of the wave function behind the
barriers to those in front of them. Then we can write

An+1 = NA1, �7�

where N j =M j+1
−1 �xj+1�G j+1

−1 G jM j�xj+1� and N=
 jN j. From
now on we assume �E�� t� outside the barrier such that 
+
�R and 
−�C, see the Appendix. Assuming that there is an
incident wave, with wave vector 
+ from the left �normalized
to unity�, part of it will be reflected �coefficient r� and part of
it will be transmitted �coefficient t�. Also there are growing
and decaying evanescent states near the barrier �coefficients
eg and ed, respectively�. The relation between all these waves
is written in the form

N�
t

0

ed

0
� =�

1

r

0

eg

� . �8�

It can be rewritten as a linear system of equations,

�
1

0

0

0
� =�

N11 0 N13 0

N21 − 1 N23 0

N31 0 N33 0

N41 0 N43 − 1
��

t

r

ed

eg

� , �9�

where Nij are the coefficients of N. By inverting the square
matrix in Eq. �9�, which we label as M, the coefficients can
be calculated from �t r ed eg�T=M−1�1 0 0 0�T. Thus, in
order to obtain the transmission amplitude t it is sufficient to
find the matrix element �M−1�11, which is given by
�M−1�11= �N11−N13N31 /N33�−1. For the general case the set

of equations above can be solved numerically and the trans-
mission is given by T= �t�2. If ky =0 the system can be solved
analytically for a single square barrier, of thickness D, with-
out bias since the localized parts of the wave function are
decoupled from the propagating ones. Then

t = ei
1D�cos�
2D� − iQ sin�
2D��−1, �10�

where

Q =
1

2
��1
2


1�2
+


1�2

�1
2
	 , �11�

with � j = �E−Vj� /�vF in region j and the momenta along the
x direction 
1 and 
2, outside and inside the barrier, respec-
tively, given by 
 j = �� j

2+� jt��1/2. The analog of Eq. �10� for
the two-band Hamiltonian Eq. �3� is the same but with 
 j
= �� jt��1/2 instead of 
 j = �� j

2+� jt��1/2. This contrasts with the
standard formula for the transmission probability obtained
from the Schrödinger equation. For a system of two barriers
at distance L as in Fig. 2�a� we can obtain the transmission
for ky =0 analytically. The result is Td= �td�2 where

td =
ei2
1�L+2D��t�2ei2�t

1 − �r�2ei2�rei2
1L , �12�

r��r�ei�r, and t��t�ei�t. Resonances will appear when
ei2�rei2
1L=1, where �r is independent of the distance L. We
obtain more resonances if L increases.

A contour plot of the transmission through a single barrier
is shown in Fig. 1. Panel �a� is for a barrier with height 100
meV and width 10 nm and the potential difference 
 be-
tween the layers is zero. In contrast to the case of a two-
dimensional electron gas �2DEG�, there are transmission
resonances for energies lower than the barrier height. These
are due to hole states inside the barrier through which the
electrons can tunnel.13 In panel �b� the barrier is 10 nm wide
and the potential difference between the layers is 

=100 meV. As seen, the ky dependence of the transmission
in panel �b� is weaker than that on kx and resembles the
Schrödinger case. The electron transmission at normal inci-
dence �ky =0� starts at kx
0.23 nm−1, corresponding to an
energy of 50 meV which is at the edge of the gap, inside
which the states are evanescent and the transmission is sup-
pressed.

FIG. 1. �Color online� Transmission through a single square
barrier of height V=100 meV and width 10 nm. The potential dif-
ference 	= �V1−V2� /2�vF is zero in panel �a� and 
=100 meV in
panel �b� inside the barrier/well region.
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Plots of transmission as function of wave vector through
double barriers are shown in Fig. 2. The barriers are 100
meV high, 10 nm wide, the distance between the barriers is
L=10 nm, and 
=0 for panel �a�, whereas panel �b� shows
results for 
=100 meV. In agreement with Ref. 14, we find
that it is the distance L between the barriers and not their
width that is important in determining the tunneling states
and thus the transmission. For more results, e.g., conduction
through unbiased multiple-barrier systems, see Refs. 14 and
15. For the double-barrier systems shown in Fig. 2, extra
resonances are found and are associated with quasibound
states in the well. It is seen from the derivation above for the
one-dimensional case that the effect of these states increases
with the interbarrier distance. In Fig. 2�b� a resonance occurs
at kx
0.16 nm−1 and results from states available in the
well between the barriers. In contrast to the single-layer case,
in Figs. 1�a� and 2�a� there is no perfect transmission for
normal incidence �ky =0�, even though the system is gapless.
This is a consequence of the chiral nature of the carriers in
bilayer graphene, see, e.g., Ref. 3.

The transmission plots shown in Figs. 1 and 2 depend on
the angle of incidence � given by tan �=ky /kx. A more di-
rect way to see that is shown in Fig. 3 where the transmission
is plotted as function of the angle of incidence for constant
energy E=17 meV. For panel �a� we used the 4�4 Hamil-
tonian of Eq. �1�, with bias 
=0, while for panel �b� we used
the 2�2 one of Eq. �3�. The figure shows a significant dis-
crepancy between the angular dependence as calculated from
the two-band and the four-band Hamiltonians. This can be
explained by the fact that the position of the resonances de-
pends strongly on the wave-vector matching at each region; a
slight change in the value of 
 j, for a given energy, may
result in a large modification of the angular position of the
transmission resonance.

The two-band parabolic approximation of Eqs. �3� and �4�
can be expected to hold if both �1 and �2 are small compared
to t�, since in that regime the nonparabolicity of the spectra
in all regions, as given by Eq. �2�, can be neglected. That
means that the two-band Hamiltonian can give accurate re-
sults only in the regime of low barrier heights and low inci-
dent electrons energies. Therefore, we consider the results of
panel �a� to be more accurate than those of panel �b� for the
energies and barrier heights considered here.

B. Conductance

It is interesting to see to what extent the transmission
affects the conductance G, which is given by

G = G0�
−�/2

�/2

T�E,��cos �d� . �13�

Here G0=2e2�EF
2 + t�EFLy / ��h�vF�, � is the angle of inci-

dence measured from the x axis, T�E ,�� is the transmission
through the structure at energy E, and Ly is the length of the
structure along the y direction.

In Fig. 4�a� we plot the conductance G through 2, 5, and
10 barriers in blue, red, and black color, respectively. The
height of the barriers is 50 meV, their width is D=10 nm,
and the interbarrier distance is L=5 nm. The solid curves are
obtained using Eq. �1� and the dashed ones using the reduced
Hamiltonian of Eq. �3� with the same coupling strength t�

=390 meV. As can be seen, both models give qualitatively
the same results. The disagreement is mostly apparent in the
low-energy region and is mainly due to the large deviation
E-V of the energy from the barrier potential V, due to which
the 2�2 Hamiltonian approximation inside the barrier fails.

The main conductance feature, for N=2, of panel �a� is
reflected in the contour plot of the transmission shown in
Fig. 4�b� with energy and angle of incidence the two axes. As
can be seen, the transmission shows the same behavior as the
conductance in the same energy range. Notice also that in
agreement with Ref. 3, the transmission vanishes for �=0.
As for the dependence of the conductance on the interbarrier
distance L, we show it, for N=2, in Fig. 4�c� for the 4�4
Hamiltonian �solid curves� and the 2�2 one �dashed

FIG. 2. �Color online� Transmission through a double barrier.
The square barriers are 100 meV high and 10 nm wide; the distance
between them is L=10 nm. In panel �a� the potential difference
between the layers is zero; in panel �b� it is 100 meV inside the
barrier/well regions.

FIG. 3. �Color online� Transmission through a 100-nm-wide
barrier as a function of the angle of incidence for constant energy
E=17 meV. Panel �a� results from the 4�4 Hamiltonian of Eq. �1�
and panel �b� from the 2�2 one of Eq. �3�. The solid red and
dashed green curves are for a single barrier with height 50 and 100
meV, respectively.
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curves�. The results of the two models are similar; the con-
ductance weakens and shifts to lower energies upon increas-
ing L, indicating a shift of the relevant state in the well with
respect to the hole states in the barriers that are responsible
for it.

IV. SUPERLATTICE

A. Dispersion relation

The model we used for a SL in graphene is shown sche-
matically in Fig. 5. The electronic spectrum resulting from

this periodic structure can be obtained by writing the solution
for the spinors as Bloch waves and applying the continuity
condition for the wave function at the potential steps.

In both barriers and wells the solutions are the ones for a
constant potential and the boundary conditions determine the
matrix relation between the wave-function coefficients in the
two regions. For a periodic potential, Bloch’s theorem ap-
plies with period l=a+b, implying �k�x+ l�=�k�x�eikl. Then
referring to Fig. 5 we obtain ��0−�=��0+� and ��−a�
=��b�e−ikl. Writing the wave function in the regions of con-
stant potential as a matrix product �=GMA, labeling the
coefficient matrices inside the barrier regions as A1 and the
ones inside the well regions as A2, and applying the above
boundary conditions, we obtain the matrix equations

G1A1 = G2A2, �14�

G1M1�− a�A1 = G2M2�b�e−iklA2. �15�

Eliminating A1 in Eqs. �10� and �11� leads to

�M1�− a�G1
−1G2 − G1

−1G2M2�b�e−ikl�A2 = 0. �16�

Equating the determinant of Eq. �16� to zero,

det�M1�− a�G1
−1G2 − G1

−1G2M2�b�e−ikl� = 0. �17�

The solution of Eq. �14� gives the energy spectrum or dis-
persion relation. From this determinant we search for the
zeros of Eq. �14� using the Newton method and obtain the
dispersion relation.

In Fig. 6 we plot the dispersion relation versus kx and ky
for three different SLs. In the first one we take the potential
on the back and front gates to be the same V=50 meV;
between the strips the potential is −50 meV. In the other two
we only vary the bias difference 
 between the two layers:

=50 meV in the barriers and 0 meV in the wells for the
second SL, and correspondingly 
=50 and 25 meV for the

(b)(a) (c)

FIG. 4. �Color online� �a� Conductance as a function of energy. The very thick blue, thick red, and thin black solid curves are for 2, 5,
and 10 barriers, respectively, of width 10 nm, height 50 meV, and interbarrier distance of 5 nm. They result from the 4�4 Hamiltonian, Eq.
�1�, while the dashed curves result from the 2�2 one, Eq. �3�. �b� Contour plot of the transmission versus energy and angle of incidence.
�c� The main conductance feature of panel �a�, for N=2, versus energy for different well widths. The solid curves are for the 4�4
Hamiltonian and the dashed ones for the 2�2 one.

FIG. 5. �Color online� Schematics of two experimental setups
for realizing the three SL potentials we investigated. In panel �a� the
layer potentials V1 and V2 are kept the same: the experimental setup
shown can be used. The setup in panel �b� can establish a bias 

=V1−V2. In both experimental setups the layer potentials are con-
trolled by the applied top Vtg and back Vbg gates.
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third one. The average potential of both layers is kept con-
stant. The parameters used are a=b=10 nm and the tunnel
coupling7 is t�=390 meV. Only the first two minibands are
shown in the left panels of Fig. 6. The middle column shows

cross sections of the dispersion relation for constant kx in
panel �a� and constant ky in panel �b�.

The SL potential creates minibands. For the first type of
SL one can easily find an analytical expression for the one-

FIG. 6. �Color online� Dispersion relation and DOS for three types of SLs. �1� The barriers are 50 meV high and the wells −50 meV
deep. �2� The barriers are biased by 
=50 meV, and the wells are unbiased, i.e., 
=0 meV. �3� The barriers are biased by 
=50 meV and
the wells by 
=25 meV. Left column: energy vs kx and ky for a=b=10 nm and t�=390 meV. Lines of constant energy, belonging to the
lower miniband, are projected onto the �kx ,ky� plane. Middle column: slices of the corresponding dispersion relation, �a� for constant kx

=0 �solid magenta curves� and kx=� / l �dashed green curves�, and �b� for constant ky =0 �solid red curves� and ky =0.2 /nm �dashed blue
curves�. Only half the Brillouin zone is shown. Right column: DOS for the corresponding SL. For the unbiased SL �1� we also show the DOS
�red area� for a SL with the same parameters on a single-layer graphene. The dashed �dashed-dotted� curves show the bilayer �single-layer�
DOS in the absence of the SL potential.
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dimensional case, i.e., for ky =0. The dispersion calculated
from the four-band Hamiltonian is

cos�kL� = cos�
1a�cos�
2b� − Q sin�
1a�sin�
2b� ,

�18�

where � j =E−Vj in region j and Q is given by Eq. �11�. In
these formulas the values of the momenta along the x direc-
tion in the different regions are denoted as 
 j =
�,j
= ��2�� jt��1/2, both signs contribute to the dispersion rela-
tion, and the sum of the corresponding results gives the total
dispersion relation. The analog of this formula for the two-
band approximation of the Hamiltonian is the same formula
with 
�,j = ��� jt��1/2 instead of 
�,j = ��2�� jt��1/2.

In contrast to the gapless spectrum of SLs on single-layer
graphene, here a band gap is found for ky =0. This is in
agreement with the fact that for the transmission through a
barrier, there is no perfect transmission for perpendicular in-
cidence while in single-layer graphene there is. The second
SL potential has the same barrier and well parameters as Fig.
2�b�; the resonance at kx
0.16 nm−1 which we saw in this
double-barrier system seems to correspond to the energy
value of the first band, E
25 meV. Also, for the lowest
band the mexican-hat energy profile of biased bilayer
graphene is retained in the ky direction. In the third SL po-
tential the gaps between the subbands are smaller than those
of the second SL, and the dispersion relation resembles more
the �folded� one of bilayer graphene without any SL potential
but with an applied constant potential difference. The DOS
of the latter two SLs shows large van Hove peaks at energies
corresponding to the lowest band; there the velocity is also
zero and localized states form.

B. Density of states

To understand part of the behavior of carriers in a SL we
evaluate the DOS D�E�. In the reduced-zone scheme it is
given by

D�E� =
4A

�2 �
n
�

0

�/l

dkx�
0

�

dky	�E − En�kx,ky�� , �19�

where A is the surface area. The integral is evaluated numeri-
cally by converting it to a sum in the manner

�
0

�/l

dkx�
0

�

dky � � �

Nxl
	� kmax

Ny
	�

kx=0

�/l

�
ky=0

kmax

, �20�

where the kx and ky indices take the values

kx =
nx

Nx

�

l
, ky =

ny

Ny
kmax, nx�ny� = 1 ¯ Nx�Ny� . �21�

The cutoff kmax for ky is chosen sufficiently large, we took
kmax=2 nm−1. In addition, we replace the 	 function in Eq.
�15� by a Gaussian,

	�E − En�kx,ky�� � �1/�2��e−�E − En�kx,ky��2/2�2
, �22�

and choose � to be small but sufficiently large to compensate
for the discretization of kx and ky, i.e., we took �

=0.03 meV. The evaluated DOS is shown in the right panel
of Fig. 6. In these figures the magenta, green, and orange
areas are for bilayer SLs and the red one is for a single-layer
SL. The dashed and dashed-dotted curves show the DOS for
single-layer �Ds� and bilayer �Db� graphene in the absence of
the SL potential given by

Ds�E� = �E�/hvF,

Db�E� = ��E� + t�/2�/hvF, �23�

where we used the usual tight-binding Hamiltonian16 for
single-layer graphene and the one given by Eq. �1� for bi-
layer graphene. The peaks in the DOS have the typical
1 /�E−E0 behavior of 1D subbands.

V. SUMMARY AND CONCLUDING REMARKS

We evaluated the electronic transmission and conductance
through a finite number of bilayer graphene barriers. Further,
we obtained the dispersion relation and the DOS for a peri-
odically biased bilayer, i.e., a bilayer in the presence of a SL
potential. With the rapid progress in the field we expect that
such a periodic biasing will soon be realized experimentally.
Since the elastic mean-free path of carriers in high-mobility
graphene layers can be of the order of hundreds of nanom-
eters, a ballistic behavior can be expected to be observable
on the length scale of the periodic structures discussed here.

For some transmission and conductance results we used
both the four-band Hamiltonian given by Eq. �1� as well as
the reduced two-band Hamiltonian given by Eq. �3�, cf. Figs.
4 and 5. We consider the former results as more accurate
than the latter ones, since the graphene bilayer spectrum ob-
tained from the four-band Hamiltonian is known to give a
better agreement with both experimental data and theoretical
tight-binding calculations.7

For zero bias the dispersion relation shows a finite gap for
carriers with zero momentum in the direction parallel to the
barriers in contrast to the well-known results1,16 for single-
layer graphene, cf. Fig. 6. A gap also appears for a finite bias,
cf. Fig. 6. We also contrasted the DOS for bilayer graphene
with the corresponding one for single-layer graphene, cf. Fig.
6. We expect that all these results will be tested experimen-
tally in the near future.
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APPENDIX

We assume solutions of the form �C�x ,y�=�C�x�eikyy,
where C=A ,B. Then Eq. �1� and the Schrödinger equation
H�=E� lead to the following equations:

− i��x − ky��B = ��� − 	��A − t��B�, �A1a�
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− i��x + ky��A = ��� − 	��B, �A1b�

− i��x + ky��A� = ��� + 	��B� − t��A, �A1c�

− i��x − ky��B� = ��� + 	��A�, �A1d�

where ���	=�− �u0�	�, u1=u0+	, and u2=u0−	. We
solve Eq. �A1b� for �B and Eq. �A1d� for �A� and substitute
the results in Eqs. �A1a� and �A1c�. This gives

��x
2 − ky

2��A = − ��� − 	�2�A + t���� − 	��B�, �A2a�

��x
2 − ky

2��B� = − ��� + 	�2�B� + t���� + 	��A. �A2b�

For the system of Eqs. �A1a�–�A1d� and for constant poten-
tials the spectrum is determined by the equation

�− k2 + ��� − 	�2��− k2 + ��� + 	�2� − t�2���2 − 	2� = 0.

�A3�

Solving it leads to four bands ��kt�
2 =k2+	2+ t�2 /2�,

���
+ = ��kt�

2
� t��4k2	2/t�2 + k2 + t�2/4�1/2, �A4�

���
− = − ��kt�

2
� t��4k2	2/t�2 + k2 + t�2/4�1/2, �A5�

and four possible wave vectors �
�
kx= �k2−ky
2�1/2,


� = ���2 + 	2 − ky
2 � �4��2	2 + t�2���2 − 	2��1/2. �A6�

To obtain the general solution for the spinors we assume
plane-wave solutions for �A=�A

+ +�A
− of the form

�A
+ = Aei
+x + Be−i
+x, �A

− = Cei
−x + De−i
−x. �A7�

Then Eq. �A1b� gives �f�
�= �−iky �
�� / ���−	��

�B
� = f+

�Aei
�x + f−
�Be−i
�x, �A8�

with A ,B replaced by C ,D, respectively, if the lower-upper
� sign is used in � and f . Further, Eq. �A1a� gives

�B� = h�Aei
�x + h�Be−i
�x, �A9�

with h�= ����−	�2−ky
2−
�

2 � / �t����−	��. Substituting �B� in
Eq. �A1d� gives

�A� = g+
�h�Aei
�x + g−

�h�Be−i
�x, �A10�

where g�
�= �iky �
�� / ���+	�; the upper � sign in f and g

correspond to the subscripts of 
 and the lower ones to those
in front of 
. The eigenstates are

��
� = N��

1

f�
�

h�

g�
�h�

�e�i
�x+ikyy . �A11�

N� is a normalization constant, such that each state carries a
unit current, and is given by

N�2
=

t���2 − 	2�
2W
��t���� + 	� + ��� − 	�2 − ky

2 − 
�
2 �

.

�A12�

The solution �= ��A ,�B ,�B� ,�A��
T can be rewritten in the

matrix form

� =�
�A

�B

�B�

�A�

� = GM�
A

B

C

D
� , �A13�

with

G =�
1 1 1 1

f+
+ f−

+ f+
− f−

−

h+ h+ h− h−

g+
+h+ g−

+h+ g+
−h− g−

−h−
� �A14�

and

M =�
ei
+x 0 0 0

0 e−i
+x 0 0

0 0 ei
−x 0

0 0 0 e−i
−x
� . �A15�

The columns of the matrix product GM are the �un-
normalized� eigenstates of our system.
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